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The general problem of dynamics of a solid body with internal degrees of free- 
dom -linear elastic and dissipative elements -is analyzed. It is assumed that 
the periods of natural elastic oscillations and the time of their damping are 
small in comparison with the characteristic time of motion of the body relative 

to its center of mass. Approximate solutions are derived for internal degrees 
of freedom. General equations of motion of the system are obtained in the 
form of equations of solid body dynamics which contain additional terms that 

are due to inner elasticity and dissipation. The structure of these terms is de- 
termined . It is shown that in the case of a free system they consist of homo- 
geneous polynomials of the fourth and fifth powers of components of the body 

angular velocity vector. 

Problems of dynamics of asolid body ~on~~~g elastic and dissipative elements 
were considered in a number of publications, for example [l-6 I. 

1, Let us consider the motion of system S consisting of a solid body G of mass 
n and of N particles Pi of mass mt each, i = 1, . . ., N. Particles 

(further referred to as points) Pi are connected to the body and to each other by per- 
fect elastic links with linear damping. The e~i~brium position of points Pi relative 

to body G in the complete system at rest is denoted by Oi . 
We Introduce three Cartesian systems of coordinates: the stationary system O’X’I 

x2tX3’, system OxIxzx, rigidly attached to the solid body, and system OXIXzX, 
whose origin 0 is attached to the solid body and whose axes are parallel to the axes 

of system 0’X1’XziX3’. We use the following notation : 

Ro = 0’0, pi = OOiy ri = OiPi 0.11 

R i=O’Pi=R,f&-+-ri, i-=1,..., N 

The derivatives of scalar quantities with respect to time r are denoted by dots, 
and the derivatives of the three-dimensional vector p with respect to time in the co- 
ordinate systems 0x,x2x, and 0’ Xr’Xs’Xs’ are denoted, respectively, by p’ and 

p* l We have 
P * = p’ + oxp (1.2) 

where w is the veetot of absolute angular velocity of body G, i.e. of the coordinate 
system Oxpax,. Note that, since points 0 and Oi are rigidly attached to body 

cf, pi’ = 0, i = 1, . . ., N , and evidently O’ = w’, 
Let us formulate the equations of motiar of system S. We begin by considering 

the motion of points Pi relative to body G. We assume that the totality of points 
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Pi has n degrees of freedom relative to that body, and that the position of the to- 
tality in the coordinate system Os,z$,, can be defined by the IZ -dimensional 
vector p of the generalized coordinates gl, . . ., gn. We further assume that in 
the case of small oscillations the displacement vectors pi linearly depend on the 
generalized coordinates 

fi = ~ HiJPQit 
(1.3) 

i=l,...,N 
ix1 

where Hij are constant vectors in the coordinate system OZ,&3+. The kinetic 
energy of the motion of points P, relative to that coordinate system with allowance 
for equality (1.3 ) is of the form 

N n 
1 

2 c RLi(lTi’)” = + z ajk%‘qk’ (1.4) 
i=l j,k=l 

N 

ajr z ts miHij&v i, k = I, . . ., n 

We define the small oscillations of points Pi relative to body G by the fol- 
lowing Lagrange equations : 

Aq” + Bq’ + Cq = Q (1.5) 

where A, B, and C are constant symmetric square n X n matrices assumed to 
be positive definite. Matrices A = 1) ajk 11 (see (1.4), B = I( bjl; 11 , and 

c = 11 cjk 11 d fi e ne, respectively, the kinetic energy, the dissipation, and the 
potential elastic energy, In &s. (I. 5) Q denotes the n -dim~~al vector of 
generalized forces Q1, . . ., Q, which are due to inertia and external forces F, 
acting on points Pt in the coordinate system 0~~x2~~ . They are obtained from 
the latter forces by the transformation contravariant to the substitution (1.3 ) (see [7 I ) 
and are of the form 

Qj =i$Hi~{Fc--m~lRo*e +0x (0~ (pi -I-ri>> + 

W’X(pi+ri)+2wxri’])7 j--l,...,n 

(1.61 

The external forces FI that act on each point Pi are assumed to depend on 
the absolute position and the velocity of these 

F, = Fi (Ri, Ri’, t) = 
(1.7) 

F, (Ro + pi + pi, Ro’+o~(p,+r~)+q’,t), i=i,...,n 

in the derivation of which formulas (1.1) and (1.2 ) and the equalities pi’ = 0, 
i = 1, . . *, n wereused. 

Moments about pole 0 of the complete system s moving in relation to the 
coordinate system 0X1X2X8 are defined by the equation 

K =M+Ml (1.3 ) 

where K is the moment of momentum of system 5‘ relative to pole 0 in its 
motion relative to that coordinate system, and M and Ml are the principal 
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moments of all external and inertia forces, respectively, acting on system S. By 

de~ni~on these quantities are 

M = 5 (A + f;t) x Fa, MI = - x ma (pa + ra) x R,” 

Formulas (1.1) and (1.2 ) were used here, and summation was taken over all points R, 
of system S. For points of the solid body G it is necessary to set r, s 0 
in (1.9). 

For the subsequent analysis it is convenient to introduce the subsidiary system S* 
consisting of the solid body G and points Pi 
positions Oi. M 

rigidly fixed in their equilibrium 
ass of the solid body S* is 

N 

m* Z m+ lb% (2.10) 
$4 

and for it all r i = 0. We denote the center of mass of body S* by C and its 
inertia tensor relative to point 0 by J. Tensor J is obviously constant in the 
coordinate system Orrxsxa. The quantities (1.9) can be represented in the form 

K= J.o+~~~miIr,x(OxPi+.i.)+Pixri., 

M = M* +- *iI [r, x F; + pi x (F; - ??,*)J 

(1.11> 

M >. = MM,* - 5 miri x Ro” 
i=l 

Here and subsequently the asterisk denotes quantities that relate to the solid body s*, 

i,e. calculated with ri z 0, i = 1, . . ., N. 
For the rnorn~~ M* and iPI,* we have 

M” (R,, Ro’, o, o, t) = r‘, PAL x F,” (1.12) 
a 

MI* = - r) mapa x R, ‘* 
a 

Moment M* may depend on variables that define motion of the body S*) i, e. 

on RO,R,‘, 0, t , and on the vector parameter o which defines the orientationof 

system oX,XsXs relative to system OXrXaXs, Euler’s angles or the directional 
cosines of system OX$sXa relative to system OXIXzXs may be taken as com- 

ponents of vector o . Vector CT satisfies the conventional equations ( Euler’s 
kinematic equations) for a solid body, which we write in the simplified form 

(J- = f (0, @I (1.13 1 

Let the motion of point 0 be specified, i.e. let R, (t) be a known function 
of time. This is, for instance, so when body G has a fixed point . The motion of 

system 5’ is then completely determined by Eqs. (1.5 ), (1.8 ), and (1.13 ) and 

formulas(l.l)-(1.4), (1.6), (1.7), (l.ll), and(1.12). Inthatcasethemoment 
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M,* of inertia forces in (1.11) depends only on the orientation of c and on time 
t as defined by R,” (t). 

If, however, the motion of point 0 is not specified, these equations must be 
supplemented by the equation of momentum of system S - In that case it is con - 
venient to take the center of mass C of body S* as the pole 0 . Then taking 
into account the second of equalities (1.12). we obtain 

The equation of momentum change then assumes the form 

m*R,” = F* + i (Fi - Fi+ - miri”) 
i=l 

(1.14) 

(1.15) 

where m* is defined by formula (1.10) and F* = F* (R,, R,‘, u, to, t) is the 
principal vector of all external forces acting on the solid body S*, i. e. when ri G 0, 

i=l 9 - * -, IV. The derived equations of motion will be analyzed and simplified 
below. 

2. We introduce in the analysis three characteristic time scales: the character- 
istic period T1 of free elastic oscillations of points Pi relative to body G, the 

characteristic time Ts of damping of such oscillation, and the characteristic time 
Ts of motion of system S as a whole. For instance, we can assume that T, - 
CO-~. The above time scales are assumed to satisfy the inequalities 

(2.1) 

If conditions (2.1) are satisfied, time T, of free elastic oscillation damping is 
considerably shorter than time 1’s of rotation of the body about its center of mass. 
Hence in analyzing the evolution of the system motion during time intervals of order 

T,' and longer it is possible to neglect the free oscillations and consider only forced 
motions of points Pi induced by external and inertia forces. To satisfy conditions 

(Z.l)wesetinEqs. (1.6) 
C = E-V=, B = 6&BO (2.2) 

where C" and B" are matrices with bounded elements, and e and 6 are 
small dimensionless parameters that satisfy conditions 

O<e<6<1 
(2.3) 

In the limit case of a--t0 which corresponds to infinitely great rigidity of elastic 

links equalities (1.5 ) and (2.2 ) imply that Q E 0 , and from formulas (1.3 ) we then 

obtain ri E 0 for i = 1, . . ., N. Thus, when E = 0 , Eqs. (1.8 ), (1. ll), 
and (1.15 ) with allowance for (1.2 ) yield 

J.o’+ox(J.m)=M*+M1*, m*Ro”=F* (2.4) 

which are the equations of motion of the solid body S* into which system S is 
transformed when e + 0. 

For small positive e and 6 Eq. (1.5 ) with conditions (2.2 ) assumes the form 
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e2Aq” + 6eB”q’ + C”q = e”Q (2.5) 

An approximate solution of Eq. (2.5 ) with small parameters (2.3 ) at derivatives 
can be obtained by asymptotic methods (see, e. g., [S] ). It consists of a regular part 
and of a solution of the type of boundary layer that is rapidly damped as the time from 
the initial instant inscreases. 

Let us begin by considering the free elastic oscillations defined by the homogeneous 
system (2.5 ) for Q = 0. The related characteristic equation is of the form 

det (r23L2A -j- 6~2. B” + c”) = 0 (2.6 > 

We pass from generalized coordinates 4 to conventional ones in which the two 
positive definite matrices A and C” simultaneously reduce to a diagonal form 
[?I. Such transformation reduces matrix A to unit matrix I, matrix C” to 
the diagonal matrix C,” with positive diagonal elements, and matrix B” to some 

positive definitematrix Z?,‘. The characteristic equation (2.6) then becomes 

det (A21 + MB,” + C,O) = 0, A = EL (2.7 1 

Roots of Fq. (2.7 ) are determined by expansions in the small parameter S of the form 

Aj = _t i (Cl”)jj - l/26 (Bl’)jj + 0 (6’), i = I, . . . , n (2.8) 

where subscripts jj denote the diagonal elements of matrices; these elements are 
positive, Reverting to variable h in (2.7 ) from (2.8 ) we obtain 

hj = + iz;Zj - ‘/9_6&-’ (B,“)jj -f 0 (6&-l) (2.9) - 

Rj = E-l (Cl*)jjf f = 1, . . . , t2 

Quantities 51, are the natural oscillation frequencies of the conservative system to 
which system (1.5) reduces when B = 0. Equalities (2.9) yield the estimates 

T, = 0 (a-l), T, = 0 (E-16), T, = 0 (I) (2.10 ) 

the last of which follows from the independence of Ts from parameters E and 6 . 
It follows from formulas (2.10) and (2.3) that inequalities (2.1) are satisfied. The 
free oscillations that correspond to eigenvalues of (2.9 ) represent the rapidly damped 
part of solution of the type of boundary layer. Some time after the initial instant, i. e. 

for times of order of T, and greater, such oscillations can be disregarded. 
That part of solution of system (2.5) that is regular with respect to 8 and fi 

is obtained in the form of expansions in powers of parameters 8’ and es .Allowing 
for inequalities (2.3 ) we obtain 

q = E2$‘) + E36q(‘) + 0 (E4) (2.11) 

Substi~t~g expansions (2.11) into Eq. (2.5) and equating coefficients at powers of 
parameters e and 6, we obtain 

qC9 = (CO)-IQ*, q(l) = -(C”) -1BOqU’Y (2. Y.2 1 

where Q* is the vector of generalized forces in which it is necessary to set p zr 0. 
Consequently, forces Qj* relate to the solid body s* and are determined by 
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formulas(l.G)and(l.7)for ri z 0, i = 1, . . ., N. Wehave 

Qj* = i$l H,j {Fi* - ni [R,” + UJ X (0 X Pi) + 0’ X PiI) 

Fi*=Fi(R,+p<,R,‘+o XPi,t); i=l,...,N; j=l,...,~~ 

Using notation (2.2 we the of (2.12 as 

= C-l [Q* - BC- l (Q*)‘l + 0 (84) (2.14) 

This solution defines the small forced motions of points Pi relative to body G. 

8. To simplify the equations of motion of system s on assumptionsstated above 
it is necessary to substitute solution (2.14) into formulas (1.8 ), (1. ll), and (1.15 ). 
Note that according to (2.2) vector 4 in (2.14) is of order 8s. The order of vec- 
tors ri defined by formula (1.3 ) is the same. Taking this into consideration we re- 
duce Eqs. (1.8 ), (1. ll), and (1.15 ) to the form 

J.o’+oX(J.w)=M*+M1* fp, m*Ro”=F”+cp (3.1) 

(3.2) 

mi(ri x RO”)-mi[ri X (0 X pi)+pi X ri’]*)+O(&4) 

where i9Fi* / dR, and dFi* / dR,’ are matrices of partial derivatives of fun- 
tions Fi* (2.13 ) with respect to components of their vector arguments. 

Equations (3.1) are similar to the equations of motion (2.4) for the solid body S*, 
except for the terms ,LI and “p . These terms may be considered to be the principal 
moment about point 0 and the principal vector, respectively, of forces acting on 
the solid S* and produced by its elastic and dissipative elements. Vectors p. 
and cp in (3.2) are linearly dependent of vectors ri and their derivatives, and con- 

tain terms of order a2 and ~~6. Terms 0 (Ed) and 0 (~~6) correspond, resp- 
ectively, to internal elastic and dissipation forces. 

We shall show that vectors p and cp can be defined with an accuracy within 
quantities of order c* in terms of variables R,, R,‘, CT, co, and t only that 

define the motion of the solid S*. For this we first substitute in (3.2) for the deri - 

vatives ri’ and Pi” their expressions in formula (1.2) and, then, use formulas (1.3 ) 

for representing vectors ri, ri ’ and rill in terms of Q, Q’, and Q” . (When 
differentiating (1.3 ) it is necessary to take into account that in the coordinate system 

0x1X223 vectors Hij are constant). After this vectors p and cp depend 
only on vector Q and its derivatives, which we eliminate using formulas (2.14 )and 

(2.13 ). As the result, vectors p and cp represented by functions of vectors R, 
and o and of their derivatives, and also on vectors Hij and pi which in the CO- 

ordinate system Ox,x,x~ are known constants. The expressions for p and Cp con- 
tain higher derivatives of vectors R, and o , hence Eqs. (3.1) are of an order that 
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is formally higher than that of conventi~al equations of solid body dynamics. However 
these higher derivatives may be excluded without loss of accuracy. 

Note that the equations of motion (2.4) of the solid 5’” can always be sol- 
ved for higher derivatives, i. e. for o’ and R,“, which yields formulas 

0’ = fr (R,, Ro’, o, 0, t), &,‘. = fs (R,, Ro’t o, 0, r) (3.3) 

Differentiating equalities (3.3 ) with allowance for (1.13 ),we can obtain formulas 
for higher derivatives @“, R,“’ , etc. in terms of the same variables R,, R,‘, 
0, o, and ;e. Since the derived equations of motion (3,1) of a deformable body 
differ from the equations of motion (2.4) of a solid by the terms P and cp of order 

e2, expressions (3.3 ) and their derivatives are also valid for &IS, (3,1) with an error 
of 0 (t?). Hence the substitution of expressions (3.3) and their derivatives into 
formulas (3.2) for the quantities iu and ‘p , which are themselves of order aa’, re- 
sults in an error 0 (Ed) which is within the accuracy of equalities (3.2 ), 

ELiminating derivatives o’, o”, R,“, R,“’ , etc., using equalities (3.3 ) and 
their derivatives, we thus obtain the sought functions of the form 

~_t = or, (R,, Ro’, o, 0, t), cp = cp (R,, Ro’, o, Ed, t) (3.4 ) 

accurate within (I (a4). Functions (3.4), as moment M* in (1.12) and force F* 
in (1.15 ), depend only on the parameters of motion of the body s* . Hence Eqs. (3.1) 
together with (3,4) and (1.13 ) constitute a closed system similar to that of equations 
of motion of a solid body. These equations define the evolution of motions of the de- 
formable system 5’ through time intervals that are considerably longer than the time 
of natural elastic oscillation damping. The quantities p and (p represent here 
small perturbations, hence it is possible to apply to the derived system various methods 
of the small parameter, in particular the method of averaging. 

Functions (3.4) are not presented here in their explicit form owing to their un - 
wieldmess, however, the transformation procedure described above, whichuses formulas 
(3,2), (1.2)‘ (1.3)‘ (2.13), (2.14), (2.4) and (3.3) makes it possible to uniquely 
devise functions (3.4 ), 

44 ‘ho examples of determination of the structure of function (3.4) are pre- 
sentedbelow, In both of these it is assumed that moment M * and all external forces 

F, acting on points Pi are zero. In conformity with(2,W ) and (3-2) we then have 

Qj*=-. ~Hij”i~R,..+co~(o,~p~)+o’xpi]. i=i, . . . . n 
(4.1) 

i=l 

ri x R,," + [ri x (o x pi)+ps x Q']'}, rp = - 

III the first example we furthermore assume that point o 
which in accordance with (1.12) implies that Ml* = 0. 

is stationary, Re 3 0, 

In the second exampie the complete system is assumed free of external forces, i, e. 
F4 zz 0. Taking the center of mass C of system S * as the pole 0, we have in 

accordance with (1.14) MI* = 0. 
Thus in both examples M* = Ml* = 0, and the first of Eqs. (3.1) yields 
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J.cu’+o x (Jao)=fi=O(ez) 

and the first of equalities (3.3 ) assumes the form 

a’=--J-1.(0x J.ce)+O(ea) 

39 

(4.2) 

(4.3) 

Differentiation of equality (4.3 ) shows that the k -th derivative o)(~) is a homo- 
geneous polynomial of k + 1 power of components of vector 0, with k = 0, i, . . . . 
accurate within terms of order es . 

In the first example (II, = 0) the first of equalities (4.1) shows that Qi* are 
homogeneous polynomials in second powers of o of order m0102 , where m,, is the 

characteristic mass of points Pi and 1 is a characteristic linear dimension of order 

Pi. Then from equality (2.14 ) follows that q is me sum ofhomogeneous polynomials 
in second and third powers of o of orders m,lc-102 and m,W2b03 , respectively. 
Here c is the characteristic stiffness of elastic links (a quantity of the order of elements 

of matrix C ) and b is the characteristic dissipation coefficient (a quantity of the 
order of elements of matrix B ). The structure of vectors ri, i = 1, . a e 1 N 

which are determined by formula (1.3 ) is the same, Note that (4.3 ) implies that each 
differentiation raises the power of polynomials in o by one. Hence, for R, = 0 

vector ,u in (4.1) is the sum of homogeneous polynomials in the fourth and fifth 
powers of components oj of vector 0, namely, 

P=&(@)SP5(~)3_O(eQ) (4.4) 
3 

3 

Ps(@) = 
c 

EjklmnWjWkmlmmmn= ' = 0(&i) 

j, k, Z,m,n=l. 

where the orders of quantities correspond to those in (2.2). In the coordinate system 
attached to the solid body the coefficients Djkltn and E jrz mn are constants ex- 

pressed in terms of constants mj, J, C”, B”, Hill and pi. Polynomials & and Pr, 

represent the moments of elastic and dissipation forces, respectively. 
Let us pass to the second example (F * = 0). The second of Eqs. (3,l) implies 

that in this case R,” = 0 (e”). Hence the quantities Qj* and p are in (4.1) of 
the same form(%th the accepted accuracy 0 (E’) ) as in the first example. The per- 

turbing moment is is again defined by formulas (4.4), and the perturbing force Cp 
in (4.1) by similar formulas in the form of the sum of homogeneous polynomials in the 
fourth and fifth powers of 0. 

Equations (4.2) and (4.1) were originally derived in [5] for the case of a single 
point Pi on an elastic link (N = 1) . 

Formulas (4. 4) were obtained in explicit form for some particular cases (of sym- 

metrical solid body S * ), and Eq. (4.2) with moment defined by (4.4) was inte- 

grated in C5 1. 

6. Similar analysis can be applied to a solid body to which instead of discrete 
points are attached solid elastic bodies such as rods, plates, or shells, with linear dis- 
sipation . However in that case it is necessary to use instead of solution (2.14 ) the related 
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quasi-static solution of equations of elastic equilibrium under the action of external 
and inertia forces. It can be shown that equations of the form (3.1) and (3.4), as well 
as EQ. (4.2 ) and (4.4) which are particular cases of these, remain valid. Since in the 

case of a free system inertia forces (4.1) are quadratic forms of o, elastic translations 

are also proportional to the square of components of vector W. Repeating the reasoning 

of Sect. 4 we obtain the formulas of the form (4.4). As previously, the condition of 

validity of Eqs. (3.1) and (3.4 ), or (4.2) and (4.4 ), is of the form (2.1) in which Tr 
is the greatest period of natural elastic oscillations, T, is the characteristic time of 

their damping, and Z’s - 0-l is the characteristic time of motion of the system 
as a whole. Taking Q - ~~-1 as the minimum natural elastic oscillation frequency 
of the elastic solid body, we can represent inequalities (2.1) in one of the following 
forms : 

where I is a characteristic linear dimension of the system, V - 91 is the charact- 
eristic velocity of elastic waves, and v - wl is the characteristic linear velocity of 

the system rotation. 

Note that the theory presented here does not cover the phenomenon of resonance 
between the rotation of the body itself and one of the natural elastic oscillations. 

6. Let us compare EJqs. (4.2) and (4.4) with the results obtained earlier [9] for 
the motion of a solid body with a cavity containing a viscous fluid at various Reynolds 

numbers. Let, for example, that number be small, Re = oZ%-~< 1, where o is 

the angular velocity of the body, 2 is a characteristic linear dimension of the cavity, 

and Y is the fluid kinematic viscosity. Equations of motion of the body relative to 

its center of mass can then be reduced to the form (4.2 ) [9], with vector P (0) in 

the form of a homogeneous third power polynomial in 61 whose coefficients depend 

on the form of the cavity. A similar result was obtained in [9] for a free gyrostat with 
flywheels or balls which could rotate inside it under the action of viscous friction forces 

between the body and the rotating masses. Thus the energy dissipation by the process 

of internal elastic oscillations presents a similar, but more complex, pattern of the 

evolution of body motion relative to its center of mass than that of energy dissipation 
by viscous fluid in the cavity of a solid body at high Reylolds numbers. 
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